
.

Using Automated Theorem Provers to Certify
Auto-Generated Aerospace Software

Ewen Denneyt, Bernd Fischeri, Johann S c h u m a d

'QSS / 'RIACS, NASA Ames Research Center,
{edenney,fisch,schumann}@email.arc.nasa.gov

Abstract. We describe a system for the automated certification of safety proper-
ties of NASA software. The system uses Hoare-style program verification tech-
nology to generate proof obligations which are then processed by an automated
first-order theorem prover (ATP). For full automation, however, the obligations
must be aggressively preprocessed and simplified We describe the unique re-
quirements this places on the ATP and demonstrate how the individual simpli-
fication stages, which are implemented by rewriting, influence the ability of the
.4TP to solve the proof tasks. Experiments on more than 25,000 tasks were carried
out using Vampire, Spass, and e-setheo.

1 Introduction

Software certification aims to show that the software in question satisfies a certain level
of quality, safety, or security. Its result is a certificate, Le., independently checkable
evidence of the properties claimed. Certification approaches vary widely, ranging from
code reviews to full formal verification, but the highest degree of confidence is achieved
with approaches that are based on formal methods and use logic and theorem proving
to construct the certificates.

We have developed a certification approach which uses Hoare-style techniques to
demonstrate the safety of aerospace software which has been automatically generated
from high-level specifications. Our core idea is to extend the code generator so that it
simultaneously generates code and detailed annotations, e.g.. loop invariants. A verifi-
cation condition generator (VCG) processes the annotated code and produces a set of
safety obligations, which are provable if and only if the program is safe. An automated
theorem prover (ATP) then discharges these obligations and the proofs, which can be
verified by an independent proof checker, serve as certificates.

In this paper, we describe and evaluate the application of ATPs to discharge the
emerging safety obligations. This is a crucial aspect of our approach since its practica-
bility hinges on a very high degree of automation. Our first hypothesis is that the current
generation of high-performance ATPs is-in principle-already powerful enough for
practical applications. However, this is still a very demanding area because the num-
ber of obligations is potentially very large and program verification is generally a hard
problem domain for ATPs. Our second hypothesis is thus that the application still needs
to carefully preprocess the proof tasks to make them more tractable for ATPs.

In our case, there are several factors which make a successful A n application possi-
ble. First, we certify separate aspects of safety and not full functional correctness. This

*

safety policy safety condition (,cond(c)) domain thzor?j
arithmetic
propositional

inuse Y input-varz E c . use(%) propositional
symm

va[i] E c . al , 5 i 5 ah%
v lead-varx E c . init(%)

’d matrix-exp m E c . Vi, j . m[i, j] = m[j, i] matrices
V vecror v E c . arithmetic, summations JIsize(u) v[i] = 1

Fig. 2. Safety Formulas for Different Policies

c, and a substitution sub(c), which captures how the command changes the environ-
mental information relevant to the safety policy. Using cond and sub, the rules of the
safety policy can then be derived systematically from the standard Hoare rules of the
underlying programming language [2].

From our perspective, the safety conditions cond(c) are the most interesting aspect
since they have the greatest bearing on the form of the proof obligations. Figure 2 sum-
marizes the different formulas and the domain theories needed to reason about them.
Both variable initialization and usage as well as array bounds certification are logically
simple and rely just on propositional and simple arithmetic reasoning, respectively, but
can require a lot of information to be propagated throughout the program. The symme-
try policy requires reasoning about matrix expressions expressed as a first-order quan-
tification over all matrix entries. The vector norm policy is formalized in terms of the
summation over entries in a one-dimensional array, and involves symbolic reasoning
over summation expressions.

2.2 Generating Proof Obligations

For certification purposes, the synthesis system annotates the code with mark-up infor-
mation relevant to the selected safety policy. These annotations are part of the schema
and thus instantiated in parallel with the code fragments. The annotations contain local
information in the form of logical pre- and post-conditions and loop invariants, which
is propagated throughout the code. The fully annotated code is then processed by the
VCG, which applies the rules of the safety policy to the annotated code in order to gen-
erate the safety conditions. As usual, the VCG works backwards through the code. At
each line, safety conditions are generated and the safety substitutions are applied. The
VCG has been designed to be “correct-by-inspection”, i.e., to be sufficiently simple so
that it is straightforward to see that it correctly implements the rules of the logic. Hence,
the VCG does not carry out any simplifications; in particular, it does not actually apply
the substitutions (i.e., execute the specified replacements) but maintains explicit formal
substitution terms. Consequently, the generated verification conditions (VCs) tend to
be large and must be simplified separately; the more manageable simplified verification
conditions (SVCs) which result are then processed by a first order theorem prover. The
resulting proofs can be sent to a proof checker (e g , Ivy [13]). However, since most
ATPs do not produce explicit proofs in a standardized format, we will not focus on
proof checking here but concentrate on the simplification and theorem proving steps.

?

Fig. 3. Structure of a safety obligation

The structure of a typical safety obligation (after substitution reduction and simpli-
fication) is given in Figure 3. It corresponds to the initialization safety of an assignment
within a nested loop. Most of the hypotheses consist of annotations which have been
propagated through the code and are irrelevant to the line at hand. The proof obligation
also contains the local loop invariants together with bounds on f or-loops. Finally, the
conclusion is generated from the safety formula of the corresponding safety policy.

2.3

The simplified safety obligations are then exported as a number of individual proof
obligations using TPTP first order logic syntax. A small script then adds the axioms of
the domain theory, before the completed proof task is processed by the theorem prover.
Parts of the domain theory are generated dynamically in order to facilitate reasoning
with (small) integers. The domain theory is described in more detail in Section 3.3.

The connection to a theorem prover is straightforward. For provers that do not ac-
cept the TPTP syntax, the appropriate TPTP2X-converter was used before invoking the
theorem prover. Run-time measurement and prover control (e.g., aborting provers) were
performed with the same TPTP tools as in the CASC competition [19].

Processing Proof Obligations and Connecting the Prover

3 Experimental Setup

3.1 Program Corpus

As basis for the certification experiments we generated annotated programs from four
different specifications which were written prior to and independently of the exper-
iments. The size of the generated programs ranges from 431 to 1157 lines of com-
mented C-code, including the annotations. Table 1 gives a more detailed breakdown.
The first two examples are AUTOFILTER specifications. dsl is taken from the atti-
tude control system of NASA's Deep Space One mission [22]. iss specifies a com-
ponent in a simulation environment for the Space Shuttle docking procedure at the
International Space Station. In both cases, the generated code is based on Kalman-filter
algorithms, which make extensive use of matrix operations. The other two examples
are AUTOBAYES specifications which are part of a more comprehensive analysis of

planetary nebula images taken by the Hubble Space Telescope (see [7 ,3] for more
details). segm describes an image segmentation problem for which an iterative (nu-
merical) statistical clustering algorithm is synthesized. Finally, gauss fits an image
against a two-dimensional Gaussian curve. This requires a multivariate optimization
which is implemented by the Nelder-Mead simplex method. The code generated for
these two examples has a substantiaIly different structure from the state estimation
examples. First, the numerical optimization code contains many deeply nested loops.
Also, some of the loops are convergence loops which have no fixed upper bounds
but are executed until a dynamically calculated error value gets small enough. In con-
trast, in the Kalman filter code, all loops are executed a fixed &e., known at synthesis
time) number of times. Second, the numerical optimization code accesses all arrays
element by element and contains no operations on entire matrices (e&, matrix multi-
plication). The example specifications and all generated proof obligations can be found
athttp://ase.arc.nasa.gov/autobayes/ijcar.

3.2 Simplification

Proof task simplification is an important and integral part of our overall architecture.
However, as observed before [9,5,17], simplifications-even on the purely proposi-
tional level-can have a significant impact on the performance of a theorem prover. In
order to evaluate this impact, we used six different rewrite-based simplifiers to generate
multiple versions of the safety obligations. We concentrate on rewrite-based simpli-
fications rather than decision procedures because rewriting is easier to certify: each
individual rewrite step can easily be double-checked independently.
Baseline The baseline is given by the rewrite system 7 0 which eliminates the extra-
logical constructs (including explicit formal substitutions) which the VCG employs dur-
ing the construction of the safety obligations. Our original intention was to axiomatize
these constructs in first-order logic and then (ab-) use the prokers for this elimination
step, but that turned out to be unfeasible. The main problem is that the combination
with equality reasoning produces tremendous search spaces.
Propositional Structure The first two “proper” simplification levels only work on
the propositional structure of the obligations. ?v,=, splits the few but iarge obligations
generated by the VCG into a large number of smaller obligations. It consists of two
rewrite rules Vx. P A Q -A (Vx. P) A (V x . Q) and P + (Q A E) -+ (P +
Q) A (P + R) which distribute universal quantification and implication, respectively
over conjunction. Each of the resulting conjuncts is then treated as an independent proof
task. zrOp simplifies the propositional structure of the obligations more aggressively. It
uses the rewrite rules

7 true -false
irue A P - P
true V P -A true
P + true true P +false -+ P
true =+ P - P
P + P -A true
P + (Q + R) -A (P A Q) j R

-,false ^vf true
false A P -+false
false v P -+ P

false 3 P-. true
(P A Q) =+ P -A true
\Jx . true - true

in addition to the two rules in T7.-. The rules have been chosen so that [hey preserve
the overall structure of the obligations as far as possible; in particular. conjunction and
disjunction are not distributed over each other and implications are not eliminated. Their
impact on the clausifier should thus be minimal.
Ground Arithmetics This simplification level additionally handles common exten-
sions of plain first-order logic, i.e., equality, orders, and arithmetics. The rewrite sys-
tem I,, contains rules for the reflexivity of equality and partial orders as well as the
irreflexivity of strict orders, although the latter rules are not invoked on the example
obligations. In addition, it normalizes orders into _< and > using the (obvious) rules

x > y - y < x ' x > y - x < y
x < y - y > x T X 5 y - x > y

The choice of the specific orders is arbitrary; choosing for example < instead of >
makes no difference. However, a further normalization by elimination of either the par-
tial or the strict order (e.g., using a rule z < y - x < y V x = y) leads to a substantial
increase in the formula size and thus proves to be counter-productive. xd also contains rules to evaluate ground integer operations (Le., addition, subtrac-
tion, and multiplication), equalities, and partial and strict orders. Moreover. it converts
addition and subtraction with one small integer argument (viz. less than five) into Press-
burger notation, using rules of the form z + 1 - succ(x) and x - 1 - pred(x). For
many safety policies (e.g., inir), such terms are introduced by relativized bounded quan-
tifiers (e& Vz-0 < x < R- 1 3 P (s)) and contain the only occurrences of arithmetic
operators. A final group of rules handles the interaction between succ and pred, as well
as with the orders.

succ(pred(x)) - x

x < pred(y) - 5 < y

pred(succ(x)) - x

z > pred(y) - x 2 y
succ(x) 5 y - x < y succ(z) > y - x 2 y

Language-Specific Simplification The next level handles constructs which are spe-
cific to the program verification domain, in particular array-expressions and conditional
expressions, encoding the necessary parts of the languaze semantics. The rewrite system
Tmy adds rewrite formulations of McCarthy's array axioms [E], Le., sel(upd(a, i, v), j) -
z = J ? z1 : sel(a, j) for one-dimensional arrays and similar forms for higher-dimensional
arrays. Also, some safety policies are formulated using arrays of a given dimension-
ality which are uniformly initialized with a specific value. These are represented by a
consrurruy-term, for which similar rules are required, e.g., sel(coizsrurruy(z1, d) , i) - v.

Nested sellupd-terms, which result from sequences of individual assignments to the
same array, lead to nested conditionals which in turn lead to an exponential blow-up
during the subsequent language normalization step. 7- thus also contains two rules
true ? x : y - x and false ? x : y -.A y to evaluate conditionals.

In order to evaluate the effect of these domain-specific simplifications properly,
we also experimented with a rewrite system 7&., which applies the two sel-rules in
isolation.
Policy-Specific Simpiification The most aggressive simplification level 7p1iq uses a
number of rules which are fine-tuned to handle situations that frequently arise with

. .

specific safety policies. The irzit-policy requires a rule

which is derived from the finite induction axiom to handle the result of simplifying
nested sellupd-terms. For inuse, we need a single rule def = use -false, which follows
from the fact that the two tokens def and use used by the policy are distinct. For symm,
we make use of a lemma about the symmetry of specific matrix expressions: A+BCBT
is already symmetric if (but not only if) the two mitrices A and c are symmetric,
regardless of the symmetry of B. The rewrite rule

sel(A + BCBT>i:j) = sel(A -i BCBT,j , i)
--+ sel(A,i , j) = se l (A , j , i) ~ s e l (C : i , j) = s e l (C , j , i)

formulates this lemma in an element-wise fashion.

rules are added to handle the inductive nature of finite summations:
For the nom-policy, the rules become a lot more specialized and complicated. Two

The first rule directly implements the base case of the induction; the second rule, which
implements the step case, is more complicated. It requires alpha-conversion for the
summations as well as higher-order matching for the body expressions. However, both
are under explicit control of this specific rewrite rule and not the general rewrite engine,
and are implemented directly as Prolog-predicates. A similar rule is required in a very
specific situation to substitute an equality into a summation:

The zbove rules capture the centrzi steps of some of the proofs for the normpolicy and
mirror the fact that these are essentially higher-order inferences.

Another set of rewrite rules handles all occurrences of the random number generator
by asserting that the number is within its given range, Le., I 5 rund(l, u) _< u.
Normalization The final preprocessing step transforms the obligations into pure first-
order logic. It eliminates conditional expressions which occur as top-level arguments
of predicate symbols, using rules of the form P ? T : F = R (P + T = R) A
('P + F = R) and similarly for partial and strict orders. A number of con,wence
rules move nested occurrences of conditional expressions into the required positions.
Finite summations, which only occur in obligations for the norm-policy, are represented
with a de Bruijn-style variable-free notation.
Control The simplifications are performed by a small but reasonably efficient rewrite
engine implemented in Prolog. This engine does not support full AC-rewriting but flat-
tens and orders the arguments of AC-operators. The rewrite rules, which are imple-
mented as Prolog-clauses, then do their own list matching but can take the list ordering

1

into account. The rules within each system are applied exhaustively. However, the two
most aggressive simplification levels xm: and 7p,,cy are followed by a “clean-up” phase.
This consists of the language normalization follo\ved by the propositional simplifica-
tions ‘<,oo and the finite induction rule. Similarly. 7&. is followed by the language
normalization and then by 77,3 to split the obligations.

3.3 Domain Theory

Each safety obligation is supplied with a first-order domain theory. In our case, the
domain theory consists of a fixed part which contains 44 axioms, and a set of axioms
which is generated dynamically for each proof task. The static set of axioms defines
the usual properties of equality and the order relations, as well as axioms for simple
Pressburger arithmetics and for the domain-specific operators (e.g., sellupd or rand).
The dynamic axioms are added because most theorem provers cannot calculate with
integers, and to avoid the generation of large terms of the form sua(. . . fsucc(0) . . .).
For all integer literals n, m in the proof task, we generate the corresponding axioms of
the form m > n. For small integers (in our examples n 5 6), we even generate axioms
for explicit successor-terms. i.e., R = succ”(0) and add a finite induction schema of the
form Vx : 0 5 z 5 n + (z = 0 V z = 1 V . . . V z = R). In our application domain,
these axioms are needed for some of the matrix operations; thus R can he limited to the
maximal (statically known) size of the matrices.

3.4 Theorem Provers

For the experiments, we selected several high-performance theorem provers for untyped
first-order formulas with equality. Most of the provers participated at the CASC-19
[181 proving competition in the FOL-category. We used two versions of e-setheo which
have both been derived from the CASC-version. For e-setheo-csp03F, the clausification
module has been changed and instead of the clausifier provided by the TPTP toolset
[19], FLOTTER V2.1 [21,20] was used to convert the formulas into a set of clauses. e-
setheo-new is a recent development version with several improvements over the original
e-setheo-csp03 version. Both versions of Vampire [16J have been *%&en directly “out of
the box”--they are the versions which were running during CASC-19. Spass 2.1 was
obtained from the developer’s website [20].

In the experiments, we used the default parameter settings and none of the special
features of the provers. For each proof obligation, we limited the run-time to 60 sec-
onds; the CPU-time actually used was measured with the TPTP-tools on a 2.4GHz dual
processor standard PC with 4GB memory.

4 Empirical Results

4.1 Generating and Simplifying Obligations

Table 1 summarizes the results of generating the different versions of the safety obliga-
tions. For each of the example specifications, it lists the size of the generated programs

(without annotationsj, the applicable safety policies. the respective size of the generated
annotations (before propagation), and then, for each simplifier, the elapsed time and the
number of generated obligations.

Example LoC Policy LOA Tv,+
d s l 431 array 0 5.5 11 5.3 103

init 87 9.5 21 14.1 339
inuse 61 7.3 19 12.9 453
sjntrn 75 4.8 17 5.7 101

iss 755 array 0 24.6 1 28.1 582

Trap zva1 Zmy TmY- Tw(icy
5.4 55 5.5 1 5.5 1 5.6 103 5.5 1

11.3 150 11.0 142 10.5 74 20.1 543 11.4 74
7.7 59 7.6 57 7.4 21 16.2 682 8.1 21
4.7 21 4.9 21 66.7 858 245.6 2969 70.8 865

24.8 114 24.2 4 24.0 4 27.9 582 24.7 4

517 segm 1
lnom 1 19511 3.81541 5.01 1551 3.81 411 3.61 301 3.8) 321 5.21 1571 3.61 14

gauss 110391arruy I 201121.0169(24.9[687121.21 98(21.0(20120.91 201 24.31 687121.31 20

syrnrn 87 33.0 1 34.9 185 28.1 35 27.9 35 71.0 479 396.8 3434 66.2 4SO
array 0 3.0 29 3.3 85 2.9 8 2.9 3 3.0 3 3.3 85 3.0 1
inir 171 6.5 56 12.1 464 7.8 172 7.7 130 7.6 121 12.8 470 7.6 121

linit I 118)149.8) 85 165.51 1417154.11395 153.21324 153.9 13 161 66.2 11434 154.3 [3 161

Table 1. Results of generating safety obligations

The elapsed times include synthesis of the programs as well as generation, simpli-
fication, and file output of the safety obligations; synthesis alone accounts for approx-
imately 90% of the times listed under the array safety policy. In general, the times for
generating and simplifying the obligations are moderate compared to both generating
the programs and discharging the obligations. All times are CPU-times and have been
measured in seconds using the Unix t ime-command.

Almost all of the generated obligations are valid, Le., the generated programs are
safe. The only exception is the inuse-policy which produces one invalid obligation for
each of the d s l and iss examples. This is a consequence of the respective specifica-
tions which do not use all elements of the initial state vectors. The invalidity is confined
to a single conjunct in one of the original obligations, and since none of the rewrite
systems contains a distributive law, the number of invalid obligations does not change
with simplification.

The first four simplification levels show the expected results. The baseline To yields
relatively few but large obligations which are then split up by T Y , ~ into a much larger
(on average more than an order of magnitude) number of smaller obligations. The next
two levels then eliminate a large fraction of the obligations. Here, the propositional
simplifier srQp alone already discharges between 50% and 90% of the obligations while
the additional effect of evaluating ground arithmetics (?;rd) is much smaller and gener-
ally well below 25%. The only significant difference occurs for the array-policy where
more than 80% (and in the case of d s l even all) of the remaining obligations are re-
duced to true. This is a consequence of the large number of obligations which have the
form -VI 5 n =+ P for an integer constant n representing the (lower or upper) bound

of an array. The effect of the domain-spscific simplifications is at first glance less clear.
Using the may-rules only, 7-,.. generally leads to an increase over T Y , ~ in the number
of obliytions: :his even surpasses an ordsr of magnitude for the s~ini~~-policy. However,
in combination with the other simplifications (zmxj), most of these obligations can be
discharged again, and we generally end up with less obligations than before; again, the
syrnm-policy is the only exception. The effect of the final policy-specific simplifications
is. as should be expected, highly dependent on the policy. For inuse and norm a fur-
ther reduction is achieved, while the rules for inir and symm only reduce the size of the
obligations.

4.2 Running the Theorem Provers

Table 2 summarizes the results obtained from running the theorem provers on all proof
obligations (except for the invalid obligations from the inuse-policy), grouped by the
different simplification levels. Each line in the table corresponds to the proof tasks orig-
inating from a specific safety policy (array, init, inuse, symrn, and norm). Then, for each
prover, the percentage of solved proof obligations and the total CPU-time are given. The
last two columns give the maximum and minimum percentage of solved tasks.

For the fully simplified version (7H,q). all provers are able to find proofs for all tasks
originating from at least one safety policy; e-setheo-csp03F can even discharge all the
emerging safety obligations This result is central for our application since it shows that
current ATPs can in fact be applied to certify the safety of synthesized code, confirming
our first hypothesis.

For the unsimplified safety obligations, however, the picture is quite different. Here,
the provers can only solve a relatively small fraction of the tasks and leave an unaccept-
ably large number of obligations to the user. The only exception is the array-policy,
which produces by far the simplest safety obligations. This confirms our second hy-
pothesis: aggressive preprocessing is absolutely necessary to yield reasonable results.

Let us now look more closely at the different simplification stages. Breaking the
large original formulas into a large number of smaller but independent proof tasks
(Iv,,) boosts the relative performance considerably. However, due to the large absolute
number of tasks, the absolute number of failed tasks also increases. With each additional
simplification step, the percentage of solved proof obligations increases further. Inter-
estingly, however, ‘&,=, and 7-y seem to have the biggest impact on performance. The
reason seems to be that equality reasoning on deeply nested terms and formula struc-
tures can then be avoided, albeit at the cost of the substantial increase in the number of
proof tasks. The results with the simplification strategy 7my-, which only contains the
language-specific rules, also illustrates this behavior. The nom-policy clearly produces
the most difficult proof obligations, requiring essentially inductive and higher-order rea-
soning. Here, all simplification steps are required to make the obligations go through
the first-order ATPs.

The results in Table 2 also indicate there is no single best theorem prover. Even vari-
ants of the “same” prover can differ widely in their results. For some proof obligations,
the choice of the clausification module makes a big difference. The TPTP-converter
implements a straightforward algorithm similar to the one described in [111. Rotter
has a highly elaborate conversion algorithm which performs many simplifications and

Simp Pol 1%-

/To array 110
1 init 164

in-use 19
symm 18
norm 54

7 ~ , ~ array 1457
init 3177
in-use 1123
symm 286
norm 155

Zrop array 275
init 919
in-use 177,
symm 56
norm 41

X,,, array 28
init 790
in-use 172
symm 56
norm 30

Zr,, array 28
init 582
in-use 47
symm 1337
norm 32’

‘ZmaY. array 1457
init 3825
in-use 3089
symm 6403
norm 157

qollV array 26
init 582
in-use 20
symm 1345
norm 14

avoids exponential increase in the number of generated clauses. This effect is most
visible on the unsimplified obligations (e.g., 7 a under init), where Spass and e-setheo-
csp03F-which both use the Hotter clausifier-perform substantially better than the
other provers.

Since our proof tasks are generated directly by a real application and are not “hand-
picked” for certain properties, a Iarge number of them is (almost) trivial-even in the
unsimplified case. Figure 4 shows the resources required for the proof tasks as a series of

Vampire 5.0 m&,min
% Tproof % Tprooi % Tpioo(% Tprmi % 8 1 %
96.4 192.4 94.5 284.9 96.4 73.4 95.5 178.1 95.5 102.1 96.1 94.5
76.8 3000.8 13.1 1759.8 75.0 2898.3 8.5 9224.9 8.5 8251.0 76.8 8.5
57.9 610.8 41.4 612.2 68.4 512.8 57.9 773.1 47.3 645.5 68.4 44.4
50.0 387.7 8.3 266.1 38.9 555.3 16.7 744.9 16.7 723.6 50.0 8.3
51.9 1282.4 51.9 1341.0 51.9 1224.2 50.0 1316.5 48.1 1327.1 51.9 48.1
99.0 903.4 94.2 5925.0 99.8 217.0 99.9 240.5 99.8 152.4 99.9 94.2
88.4 3969.4 91.7 20784.8 97.1 8732.2 95.0 14482.2 93.5 14203.4 97.4 88.4
59.3 819.1 96.4 4100.3 99.1 1733.5 95.3 4183.7 94.3 4206.8 99.1 59.3
93.4 1785.9 90.6 2341.0 88.5 3638.7 90.2 3315.8 91.3 1789.2 93.4 88.5
85.8 1422.1 73.5 2552.5 84.5 1572.0 87.7 1359.9 87.1 1276.0 87.7 73.5
99.3 278.2 76.4 4080.8 99.3 157.5 99.3 187.5 99.3 132.6 99.3 76.4
94.7 4239.4 73.0 17472.2 92.8 5469.7 84.9 10598.0 83.2 10546.8 94.7 73.0
86.4 1854.0 77.4 2768.3 94.9 1008.3 70.1 3806.2 65.0 3960.6 94.9 65.0
66.1 1476.2 51.8 1944.4 48.2 1911.3 58.9 1596.7 58.9 1424.8 66.1 48.2
46.3 1361.2 0.0 2483.3 41.5 1478.2 53.7 1286.7 51.2 1275.3 53.7 0.0

100.0 16.2 100.0 19.7 100.0 10.4 100.0 12.7 100.0 1.7 100.0 100.0
94.6 3944.2 94.1 8288.0 93.3 4380.1 82.5 10239.0 82.0 9040.2 94.6 82.0
86.0 1852.2 83.1 2305.2 94.8 1023.1 69.8 3718.1 67.4 3561.1 94.8 67.4
66.1 1451.1 66.1 1500.4 51.8 1716.0 62.5 1455.5 58.9 1389.8 66.1 51.8
53.3 859.4 13.3 1575.8 50.0 940.5 66.7 736.7 53.3 858.0 66.7 13.3

100.0 15.4 100.0 19.8 100.0 10.4 100.0 12.7 100.0 1.7 100.0 100.0
100.0 527.6 100.0 823.9 99.7 875.8 100.0 1401.3 99.0 785.1 100.0 99.0
100.0 323.9 100.0 343.2 100.0 171.3 100.0 262.6 87.2 525.2 100.0 87.2
100.0 1104.3 99.9 1629.3 99.4 746.4 99.1 963.9 99.0 922.7 100.0 99.0
59.4 m . 4 / 18.8 1583.1 59.4 709.71 62.5 791.7 50.0 858.6 62.5 18.8
99.9 916.4 94.2 5918.0 99.9 210.8 99.9 240.6 99.9 153.1 99.9 94.2
99.7 3412.3 96.3 13536.1 99.5 4574.9 99.8 4952.1 98.4 6000.1 99.8 96.3
99.8 5438.4 99.4 5139.0 99.8 889.2 99.8 793.5 99.6 925.9 99.8 99.4
99.9 5317.4 99.7 11787.7 99.7 3385.1 99.6 3277.3 99.6 1807.0 99.9 99.6
86.0 1306.8, 72.6 2670.8 86.0 1351.3 86.6 1449.9 86.0 1276.2 86.6 72.6

100.0 15.0 100.0 17.7 100.0 9.9 100.0 12.0 100.0 1.6 100.0 100.0
100.0 529.2 100.0 827.9 99.5 875.2 100.0 1418.9 99.0 782.5 100.0 99.0
100.0 281.7 100.0 329.7 100.0 170.7 100.0 262.6 70.0 524.8 100.0 70.0
100.0 1104.6 99.9 1640.5 99.4 760.0 99.1 1048.8 99.0 926.9 100.0 99.0
100.0 9.0 57.1 375.8 100.0 26.2 100.0 108.0 71.4 241.8 100.0 57.1

1 ~ -
~

Table 2. Certification results and times

pie charts. For each simplification stage. we show the percentage of proof tasks which
are "very simple" (Le., Tproof < Is, white), those which require between 1 and 10
seconds of run time (light gray), and the difficult ones (dark gray). The percentage of
tasks which fail within the 60s time limit is displayed in black. All numbers are obtained
with e-setheo-csp03F; the figures for the other provers look similar. With additional
preprocessing and simplification of the proof obligations, the number of failing proof
tasks decreases sharply from approximately 16% to zero and the number of easy tasks
increases substantially. This demonstrates the advantages of aggressive simplification
of the proof tasks.

I-
-. -.

9

Fig. 4. Distribution of short (Tpmf < Is, white), medium (TpmJ < l O s , light grey), long (Tp,w, <
60s, dark grey) proofs, and fading tasks (black) for the various simplification stages (e-setheo-
csp03F).

4.3 Difficult Proof Tasks

Since all proof tasks are generated in a uniform manner through the application of a
safety policy by the VCG, it is obvious that many of the difficult proof tasks share
some similarities in structure. We have identified three classes of hard examples; these
classes are directly addressed by the rewrite rules of the policy-specific simplifications
(see Section 3.2).

Most safety obligations generated by the VCG are of the form A * B1 A . . . A 6,
where the B, are variable disjoint. These obligations can be spfit up into R sn ide r
proof obligations of the form A + Bz and most theorem provers can then handle these
smaller independent obligations much more easily than the large original.

The second class contains formulas of the form s y m (~) * symm(diag-upd~res(r)).
Here, T is a matrix variable which is updated along its diagonal, and we need to show
that T remains symmetric (as defined in Section 2.1) after the updates. For a 2x2 matrix
and two updates (i.e., TOO = z and ~ 1 1 = y), we obtain the following simplified version
of an actual proof task:

V i) j . (0 5 i : j 5 1 + seZ(T,i.j) = seZ(r,j,z)) +
V i . j . (0 5 i , j 5 1 +

seZ(upd(upd(T, 1 , 1 , ~) , 0 , 0) ~) . 6 j) = ~ e E (u p d (w d (~ , 1, ~ , Y)) O , O , Z) , ~) ~)) .

This pushes the provers to their limits-e-setheo cannot prove this while Spass succeeds
here but fails if the dimensions are increased to 3x3, or if three updates are made. In

our examples. matrix dimensions up to 6x6 with 36 updates occur. yielding large proof
obligations of this specific form which are not provable by current ATPs without further
preprocessing.

Another class of trivial but hard examples, which frequently shows up in the irzit-
policy, also results from the expansion of deeply nested sel/upd-terms. These problems
have the form

‘fi:j . o 5 i < n A 0 5 J’ 5 n =+ (i 1 O A j # o f , . . . i f n A j # n +false)

and soon become intractable for the clausifier, even for small n (n = 2 or n = 3)

5 Conclusions

We have described a system for the automated certification of safety properties of
NASA state estimation and data analysis software. The system uses a generic VCG to-
gether with explicit safety policies to generate policy-specific safety obligations which
are then automatically processed by a first-order ATP. We have evaluated several state-
of-the-art ATPs on more than 25,000 obligations generated by our system. With “out-
of-the-box’’ provers, only about two-thirds of the obligations could be proven. However,
after aggressive simplification, most of the provers could solve all emerging obligations.
In order to see the effects of simplification more clearly, we experimented with specific
preprocessing stages.

It is well-known that, in contrast to traditional mathematics, software verification
hinges on large numbers of mathematically shallow but structurally complex proof
tasks, yet current provers are not well suited to this. Since the propositional structure
of a formula is of great importance, we believe that clausification algorithms should
integrate more simplification and split goal tasks into independent subtasks.

Certain application-specific constructs (e.g., seVupd) can easily lead to proof tasks
which cannot be handled by current ATPs. The reason is that simple manipulations
on deep terms, when combined with equational reasoning, can result in a huge search
space. Although specific parameter settings in a prover might overcome this problem,
this would require a deep knowledge of the individual theorem provers. and in our
experiments, we did not use any specific features or parameter settings for the individual
theorem provers.

With our approach to certification of auto-generated code, we are able to automati-
cally produce safety certificates for code of considerable length and structural complex-
ity. By combining rewriting with state-of-the-art automated theorem proving, we obtain
a safety certification tool which compares favorably with tools based on static analysis
(see [3] for a comparison).

Our current efforts focus on integrating additional safety properties and extending
the approach to synthesized code that has been modified manually.

References

[I] W. Bibel and P. H. Schmitt, (eds.). AutornaredDeduction - A Basisfor Applications. Kluwer,
1998.

[’I E. Denney and B. Fischer. “Correctness 171 Source-Level Safity Policies“. In Proc. F,M 300.3:
For-mal Methods. W C S 2805. pp. 894-9 13. Springer, 7003.

[3J E. Denney. B. Fischer, and J. Schumann. ”Adding Assurance to Automatically Generated
Code”. Accepted for High Assurance System Engineering 3004.

[A] B. Fischer, A . Hajian, K. hu th , and J. Schumann. Automatic Derivation of Statistical
Data Analysis Algorithms: Planetaq Nebulae and Beyond, 3003. Accepted for publication.
h t tp: / /ase .arc .nasa,gov/people/f ischer/ .

[5] B. Fischer. Deducrion-Based Sofnlxare Componenr Retrieval. PhD thesis, U. Passau, Ger-
many, 2001. http : //elib. ub .uni -passau. de/opus/volltexte/2 O O 2 / 2 3 / .

[6] C. managan and K. R. M. Leino. “Houdini, an Annotation Assistant for ESC/Java“. In Proc.
FME 2001: Formal Methods for Increasing Sojhare Productivity, W C S 2021, pp. 500-517.
Springer, 2001.

[7] B. Fischer and J. Schumann. ‘i\pplying AutoBayes to the Analysis of Planetary Nebulae
Images”. In Proc. 18th ASE, pp. 337-342. IEEE Comp. SOC. Press, 2003.

[8] B. Fischer and J. Schumann. “AutoBayes: A System for Generating Data Analysis Programs
from Statistical Models”. J. Functional Programming, 13(3):483-508,2003.

[9] B. Fischer, J. Schumann, and G. Snelting. “Deduction-Based Softwje Component Re-
meval”. In Bibel and Schmitt [I], pp. 265-292.

[IO] P. Homeier and D. 1Martin. “Trustworthy Tools for Trustworthy Programs: A Verified Veri-
fication Condition Generator”. In Proc. TPHOLS 94, pp. 269-284. Springer, 1994.

[1 I] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North-Holland, 1978.
[1 21 J. McCarthy. “Towards a Mathematical Science of Computation”. In Proc. IFlP Congress

62, pp. 21-28. North-Holland, 1962.
[13] W. McCune and 0. ShumsAy. “System description: W. In Proc. 17th CADE, Ln411831,

pp. 401-405. Springer, 2000.
[14] W. Reif. “The KIV Approach to Software Verification”. In KORSO: Methods, h g u a g e s

and Tools for the Construction of Correcr Sojhvare. L.NCS 1009, pp. 339-370. Springer, 1995.
[I51 W. Reif, G. Schellhorn, K. Stenzel, and M. Balser. Srrucrured Specifications andlnteracrive

Proofs wirh KZV, chapter II. 1, pp. 1330. Volume II of Bibel and Schmitt [l], 1998.
[161 A. Riazanov and A. Voronkov. “The Design and Implementation of Vampire”. AI Commu-

nications, 15(2-3):91-110,2002.
[17] J. Schumann. Automated Theorem Proving in SofMiare Engineering. Springer, 2001.
[IS] G. Sutcliffe and C. Suttner. CASC 19,2003.

[19] G. Sutcliffe and C. Suttner. TPTP Home Page. http I //www. tptp . org.
[20] C. Weidenbach. SPASS Home Page. http: //spass.mpi-sb.mpg.de.
[?I] C. Weidenbach, B. Gaede, and G. Rock. In Proc.

13th CADE, LNAI 1104, pp. 141-145. Springer, 1996.
[22] J. Whittle and J. Schumann. Automating the Implementation of Kalman-Filter Algorithms,

2003. In review.
[23] M. Whalen, J. Schumann, and B. Fischer. “AutoBayes/CC - Combining Program Syn-

thesis with Automatic Code Certification (System Description)”. In Proc. 18th CADE, W A I
2392, pp. 290-294. Springer, 2002.

[24] M. Walen, I. Schumann, and B. Fischer. “Synthesizing Certified Code”. In Proc. FME
2002: Formal Methods-Getting ITRight, W C S 2391, pp. 431-450. Springer, 2002.

http://www.cs.miami.edu/-tptplCASCj19.

“Spass and Hotter version 0.42”.

